John von Neumann and the Origins of Modern Computing

Look inside
Paperback
$40.00 US
On sale Dec 07, 1990 | 396 Pages | 9780262518857

William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing.

John von Neumann (1903-1957) was unquestionably one of the most brilliant scientists of the twentieth century. He made major contributions to quantum mechanics and mathematical physics and in 1943 began a new and all-too-short career in computer science. William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. These, Aspray reveals, extended far beyond his well-known work in the design and construction of computer systems to include important scientific applications, the revival of numerical analysis, and the creation of a theory of computing.Aspray points out that from the beginning von Neumann took a wider and more theoretical view than other computer pioneers. In the now famous EDVAC report of 1945, von Neumann clearly stated the idea of a stored program that resides in the computer's memory along with the data it was to operate on. This stored program computer was described in terms of idealized neurons, highlighting the analogy between the digital computer and the human brain. Aspray describes von Neumann's development during the next decade, and almost entirely alone, of a theory of complicated information processing systems, or automata, and the introduction of themes such as learning, reliability of systems with unreliable components, self-replication, and the importance of memory and storage capacity in biological nervous systems; many of these themes remain at the heart of current investigations in parallel or neurocomputing.Aspray allows the record to speak for itself. He unravels an intricate sequence of stories generated by von Neumann's work and brings into focus the interplay of personalities centered about von Neumann. He documents the complex interactions of science, the military, and business and shows how progress in applied mathematics was intertwined with that in computers.

William Aspray is Director of the Center for the History of Electrical Engineering at The Institute of Electrical and Electronics Engineers.

William Aspray is Bill and Lewis Suit Professor of Information Technologies in the School of Information at the University of Texas at Austin. He is the coeditor of Women and Information Technology: Research on Underrepresentation (2006) and The Internet and American Business (2008), both published by the MIT Press.

About

William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing.

John von Neumann (1903-1957) was unquestionably one of the most brilliant scientists of the twentieth century. He made major contributions to quantum mechanics and mathematical physics and in 1943 began a new and all-too-short career in computer science. William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. These, Aspray reveals, extended far beyond his well-known work in the design and construction of computer systems to include important scientific applications, the revival of numerical analysis, and the creation of a theory of computing.Aspray points out that from the beginning von Neumann took a wider and more theoretical view than other computer pioneers. In the now famous EDVAC report of 1945, von Neumann clearly stated the idea of a stored program that resides in the computer's memory along with the data it was to operate on. This stored program computer was described in terms of idealized neurons, highlighting the analogy between the digital computer and the human brain. Aspray describes von Neumann's development during the next decade, and almost entirely alone, of a theory of complicated information processing systems, or automata, and the introduction of themes such as learning, reliability of systems with unreliable components, self-replication, and the importance of memory and storage capacity in biological nervous systems; many of these themes remain at the heart of current investigations in parallel or neurocomputing.Aspray allows the record to speak for itself. He unravels an intricate sequence of stories generated by von Neumann's work and brings into focus the interplay of personalities centered about von Neumann. He documents the complex interactions of science, the military, and business and shows how progress in applied mathematics was intertwined with that in computers.

William Aspray is Director of the Center for the History of Electrical Engineering at The Institute of Electrical and Electronics Engineers.

Author

William Aspray is Bill and Lewis Suit Professor of Information Technologies in the School of Information at the University of Texas at Austin. He is the coeditor of Women and Information Technology: Research on Underrepresentation (2006) and The Internet and American Business (2008), both published by the MIT Press.

Books for National Depression Education and Awareness Month

For National Depression Education and Awareness Month in October, we are sharing a collection of titles that educates and informs on depression, including personal stories from those who have experienced depression and topics that range from causes and symptoms of depression to how to develop coping mechanisms to battle depression.

Read more

Horror Titles for the Halloween Season

In celebration of the Halloween season, we are sharing horror books that are aligned with the themes of the holiday: the sometimes unknown and scary creatures and witches. From classic ghost stories and popular novels that are celebrated today, in literature courses and beyond, to contemporary stories about the monsters that hide in the dark, our list

Read more

Books for LGBTQIA+ History Month

For LGBTQIA+ History Month in October, we’re celebrating the shared history of individuals within the community and the importance of the activists who have fought for their rights and the rights of others. We acknowledge the varying and diverse experiences within the LGBTQIA+ community that have shaped history and have led the way for those

Read more