Common Sense, the Turing Test, and the Quest for Real AI

Ebook
On sale Feb 17, 2017 | 192 Pages | 9780262338370

See Additional Formats
What can artificial intelligence tell us about the mind and intelligent behavior? A computer science expert explores the importance of common sense in everyday decision making.

What can artificial intelligence teach us about the mind? If AI’s underlying concept is that thinking is a computational process, then how can computation illuminate thinking? It’s a timely question. Artificial intelligence is all the rage, and the buzziest AI buzz surrounds adaptive machine learning: computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to “good old fashioned artificial intelligence,” which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns—as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk.

Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence—the Winograd Schema Test, developed by Levesque and his colleagues. “If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it,” he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.
Hector J. Levesque is Professor Emeritus in the Department of Computer Science at the University of Toronto. He is the author of Common Sense, the Turing Test, and the Quest for Real AI, coauthor (with Gerhard Lakemeyer) of The Logic of Knowledge Bases, and coeditor (with Ronald J. Brachman) of Knowledge Representation and Reasoning, all three published by the MIT Press.

About

What can artificial intelligence tell us about the mind and intelligent behavior? A computer science expert explores the importance of common sense in everyday decision making.

What can artificial intelligence teach us about the mind? If AI’s underlying concept is that thinking is a computational process, then how can computation illuminate thinking? It’s a timely question. Artificial intelligence is all the rage, and the buzziest AI buzz surrounds adaptive machine learning: computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to “good old fashioned artificial intelligence,” which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns—as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk.

Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence—the Winograd Schema Test, developed by Levesque and his colleagues. “If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it,” he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.

Author

Hector J. Levesque is Professor Emeritus in the Department of Computer Science at the University of Toronto. He is the author of Common Sense, the Turing Test, and the Quest for Real AI, coauthor (with Gerhard Lakemeyer) of The Logic of Knowledge Bases, and coeditor (with Ronald J. Brachman) of Knowledge Representation and Reasoning, all three published by the MIT Press.

Books for National Depression Education and Awareness Month

For National Depression Education and Awareness Month in October, we are sharing a collection of titles that educates and informs on depression, including personal stories from those who have experienced depression and topics that range from causes and symptoms of depression to how to develop coping mechanisms to battle depression.

Read more

Horror Titles for the Halloween Season

In celebration of the Halloween season, we are sharing horror books that are aligned with the themes of the holiday: the sometimes unknown and scary creatures and witches. From classic ghost stories and popular novels that are celebrated today, in literature courses and beyond, to contemporary stories about the monsters that hide in the dark, our list

Read more

Books for LGBTQIA+ History Month

For LGBTQIA+ History Month in October, we’re celebrating the shared history of individuals within the community and the importance of the activists who have fought for their rights and the rights of others. We acknowledge the varying and diverse experiences within the LGBTQIA+ community that have shaped history and have led the way for those

Read more