Download high-resolution image Look inside
Listen to a clip from the audiobook
audio play button
0:00
0:00

Seven Brief Lessons on Physics

Look inside
Listen to a clip from the audiobook
audio play button
0:00
0:00
The New York Times bestseller from the author of The Order of Time and Reality Is Not What It Seems, Helgoland, and Anaximander

“One of the year’s most entrancing books about science.”—The Wall Street Journal

“Clear, elegant...a whirlwind tour of some of the biggest ideas in physics.”The New York Times Book Review

 
This playful, entertaining, and mind-bending introduction to modern physics briskly explains Einstein's general relativity, quantum mechanics, elementary particles, gravity, black holes, the complex architecture of the universe, and the role humans play in this weird and wonderful world. Carlo Rovelli, a renowned theoretical physicist, is a delightfully poetic and philosophical scientific guide. He takes us to the frontiers of our knowledge: to the most minute reaches of the fabric of space, back to the origins of the cosmos, and into the workings of our minds. The book celebrates the joy of discovery.  “Here, on the edge of what we know, in contact with the ocean of the unknown, shines the mystery and the beauty of the world,” Rovelli writes. “And it’s breathtaking.”
From the First Lesson: The Most Beautiful of Theories

In his youth Albert Einstein spent a year loafing aimlessly. You don’t get anywhere by not “wasting” time—something, unfortunately, that the parents of teenagers tend frequently to forget. He was in Pavia. He had joined his family, having abandoned his studies in Germany, unable to endure the rigors of his high school there. It was the beginning of the twentieth century, and in Italy the beginning of its industrial revolution. His father, an engineer, was installing the first electricitygenerating power plants in the Paduan plains. Albert was reading Kant and attending occasional lectures at the University of Pavia: for pleasure, without being registered there or having to think about exams. It is thus that serious scientists are made.

After this he registered at the University of Zurich and immersed himself in the study of physics. A few years later, in 1905, he sent three articles to the most prestigious scientific journal of the period, the Annalen der Physik. Each of these is worthy of a Nobel Prize. The first shows that atoms really exist. The second lays the first foundation for quantum mechanics, which I will discuss in the next lesson. The third presents his first theory of relativity (known today as “special relativity”), the theory that elucidates how time does not pass identically for everyone: two identical twins find that they are different in age if one of them has traveled at speed.

Einstein became a renowned scientist overnight and received offers of employment from various universities. But something disturbed him: despite its immediate acclaim, his theory of relativity does not fit with what we know about gravity, namely, with how things fall. He came to realize this when writing an article summarizing his theory and began to wonder if the law of “universal gravity” as formulated by the father of physics himself, Isaac Newton, was in need of revision in order to make it compatible with the new concept of relativity. He immersed himself in the problem. It would take ten years to resolve. Ten years of frenzied studies, attempts, errors, confusion, mistaken articles, brilliant ideas, misconceived ideas.

Finally, in November 1915, he committed to print an article giving the complete solution: a new theory of gravity, which he called “The General Theory of Relativity,” his masterpiece and the “most beautiful of theories,” according to the great Russian physicist Lev Landau.

There are absolute masterpieces that move us intensely: Mozart’s Requiem, Homer’s Odyssey, the Sistine Chapel, King Lear. To fully appreciate their brilliance may require a long apprenticeship, but the reward is sheer beauty—and not only this, but the opening of our eyes to a new perspective upon the world. Einstein’s jewel, the general theory of relativity, is a masterpiece of this order.
Carlo Rovelli is a theoretical physicist who has made significant contributions to the physics of space and time. His books, including Seven Brief Lessons on Physics, The Order of Time, Helgoland, and White Holes, are international bestsellers that have been translated into more than fifty languages. He has been included among the 100 most influential Global Thinkers by Foreign Policy magazine and among the world’s top 50 thinkers by Prospect magazine. Rovelli has worked in Italy, the United States and France, and currently resides in Canada. View titles by Carlo Rovelli

About

The New York Times bestseller from the author of The Order of Time and Reality Is Not What It Seems, Helgoland, and Anaximander

“One of the year’s most entrancing books about science.”—The Wall Street Journal

“Clear, elegant...a whirlwind tour of some of the biggest ideas in physics.”The New York Times Book Review

 
This playful, entertaining, and mind-bending introduction to modern physics briskly explains Einstein's general relativity, quantum mechanics, elementary particles, gravity, black holes, the complex architecture of the universe, and the role humans play in this weird and wonderful world. Carlo Rovelli, a renowned theoretical physicist, is a delightfully poetic and philosophical scientific guide. He takes us to the frontiers of our knowledge: to the most minute reaches of the fabric of space, back to the origins of the cosmos, and into the workings of our minds. The book celebrates the joy of discovery.  “Here, on the edge of what we know, in contact with the ocean of the unknown, shines the mystery and the beauty of the world,” Rovelli writes. “And it’s breathtaking.”

Excerpt

From the First Lesson: The Most Beautiful of Theories

In his youth Albert Einstein spent a year loafing aimlessly. You don’t get anywhere by not “wasting” time—something, unfortunately, that the parents of teenagers tend frequently to forget. He was in Pavia. He had joined his family, having abandoned his studies in Germany, unable to endure the rigors of his high school there. It was the beginning of the twentieth century, and in Italy the beginning of its industrial revolution. His father, an engineer, was installing the first electricitygenerating power plants in the Paduan plains. Albert was reading Kant and attending occasional lectures at the University of Pavia: for pleasure, without being registered there or having to think about exams. It is thus that serious scientists are made.

After this he registered at the University of Zurich and immersed himself in the study of physics. A few years later, in 1905, he sent three articles to the most prestigious scientific journal of the period, the Annalen der Physik. Each of these is worthy of a Nobel Prize. The first shows that atoms really exist. The second lays the first foundation for quantum mechanics, which I will discuss in the next lesson. The third presents his first theory of relativity (known today as “special relativity”), the theory that elucidates how time does not pass identically for everyone: two identical twins find that they are different in age if one of them has traveled at speed.

Einstein became a renowned scientist overnight and received offers of employment from various universities. But something disturbed him: despite its immediate acclaim, his theory of relativity does not fit with what we know about gravity, namely, with how things fall. He came to realize this when writing an article summarizing his theory and began to wonder if the law of “universal gravity” as formulated by the father of physics himself, Isaac Newton, was in need of revision in order to make it compatible with the new concept of relativity. He immersed himself in the problem. It would take ten years to resolve. Ten years of frenzied studies, attempts, errors, confusion, mistaken articles, brilliant ideas, misconceived ideas.

Finally, in November 1915, he committed to print an article giving the complete solution: a new theory of gravity, which he called “The General Theory of Relativity,” his masterpiece and the “most beautiful of theories,” according to the great Russian physicist Lev Landau.

There are absolute masterpieces that move us intensely: Mozart’s Requiem, Homer’s Odyssey, the Sistine Chapel, King Lear. To fully appreciate their brilliance may require a long apprenticeship, but the reward is sheer beauty—and not only this, but the opening of our eyes to a new perspective upon the world. Einstein’s jewel, the general theory of relativity, is a masterpiece of this order.

Author

Carlo Rovelli is a theoretical physicist who has made significant contributions to the physics of space and time. His books, including Seven Brief Lessons on Physics, The Order of Time, Helgoland, and White Holes, are international bestsellers that have been translated into more than fifty languages. He has been included among the 100 most influential Global Thinkers by Foreign Policy magazine and among the world’s top 50 thinkers by Prospect magazine. Rovelli has worked in Italy, the United States and France, and currently resides in Canada. View titles by Carlo Rovelli