Verifying Cyber-Physical Systems

A Path to Safe Autonomy

Ebook
On sale Jul 13, 2021 | 312 Pages | 9780262370264

See Additional Formats
A graduate-level textbook that presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification.

Verification aims to establish whether a system meets a set of requirements. For such cyber-physical systems as driverless cars, autonomous spacecraft, and air-traffic management systems, verification is key to building safe systems with high levels of assurance. This graduate-level textbook presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. It distills the ideas and algorithms that have emerged from more than three decades of research and have led to the creation of industrial-scale modeling and verification techniques for cyber-physical systems.

The book discusses such computer science concepts as undecidability and abstractions, alongside concepts from control theory including multiple Lyapunov functions and barrier certificates, all within a unified mathematical language. It explains algorithms for reachability analysis, counter-example guided abstraction refinement, and data-driven verification, as well as the key data structures that enable their effective implementation. Other topics include invariants, deductive verification, progress analysis, sensitivity analysis, simulation relations, fairness, model checking, satisfiability modulo theories, temporal logics, compositional reasoning, convergence analysis, asynchronous processes, and verification of black-box systems.The book provides more than twenty examples of cyber-physical verification, ranging from conceptual models to advanced driving-assist systems. Each chapter offers exercise problems; supporting materials, including slides, simulation code, additional exercises, and solutions are available on the book's website.
Preface xv
1 Introduction 1
2 Modeling Computation 17
3 Modeling Physics 31
4 Modeling Cyber-Physical Systems 55
5 Composing Models 79
6 Specifying Requirements 101
7 Verifying Invariants 123
8 Abstractions and Compositional Reasoning 145
9 Reachability Analysis 165
10 Progress Analysis 197
11 Data-Driven Verification 217
Appendix A: Linear Algebra and Real Analysis 247
Appendix B: Computability and Complexity 255
Appendix C: Specification Language Reference 263
References 271
Index 291
Sayan Mitra is Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

About

A graduate-level textbook that presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification.

Verification aims to establish whether a system meets a set of requirements. For such cyber-physical systems as driverless cars, autonomous spacecraft, and air-traffic management systems, verification is key to building safe systems with high levels of assurance. This graduate-level textbook presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. It distills the ideas and algorithms that have emerged from more than three decades of research and have led to the creation of industrial-scale modeling and verification techniques for cyber-physical systems.

The book discusses such computer science concepts as undecidability and abstractions, alongside concepts from control theory including multiple Lyapunov functions and barrier certificates, all within a unified mathematical language. It explains algorithms for reachability analysis, counter-example guided abstraction refinement, and data-driven verification, as well as the key data structures that enable their effective implementation. Other topics include invariants, deductive verification, progress analysis, sensitivity analysis, simulation relations, fairness, model checking, satisfiability modulo theories, temporal logics, compositional reasoning, convergence analysis, asynchronous processes, and verification of black-box systems.The book provides more than twenty examples of cyber-physical verification, ranging from conceptual models to advanced driving-assist systems. Each chapter offers exercise problems; supporting materials, including slides, simulation code, additional exercises, and solutions are available on the book's website.

Table of Contents

Preface xv
1 Introduction 1
2 Modeling Computation 17
3 Modeling Physics 31
4 Modeling Cyber-Physical Systems 55
5 Composing Models 79
6 Specifying Requirements 101
7 Verifying Invariants 123
8 Abstractions and Compositional Reasoning 145
9 Reachability Analysis 165
10 Progress Analysis 197
11 Data-Driven Verification 217
Appendix A: Linear Algebra and Real Analysis 247
Appendix B: Computability and Complexity 255
Appendix C: Specification Language Reference 263
References 271
Index 291

Author

Sayan Mitra is Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

Books for National Depression Education and Awareness Month

For National Depression Education and Awareness Month in October, we are sharing a collection of titles that educates and informs on depression, including personal stories from those who have experienced depression and topics that range from causes and symptoms of depression to how to develop coping mechanisms to battle depression.

Read more

Horror Titles for the Halloween Season

In celebration of the Halloween season, we are sharing horror books that are aligned with the themes of the holiday: the sometimes unknown and scary creatures and witches. From classic ghost stories and popular novels that are celebrated today, in literature courses and beyond, to contemporary stories about the monsters that hide in the dark, our list

Read more

Books for LGBTQIA+ History Month

For LGBTQIA+ History Month in October, we’re celebrating the shared history of individuals within the community and the importance of the activists who have fought for their rights and the rights of others. We acknowledge the varying and diverse experiences within the LGBTQIA+ community that have shaped history and have led the way for those

Read more