Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Algorithms, Worked Examples, and Case Studies

Ebook
On sale Oct 20, 2020 | 856 Pages | 9780262361101

See Additional Formats
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
I Introduction to Machine Learning and Data Analytics
1 Machine Learning for Predictive Data Analytics
2 Data to Insights to Decisions
3 Data Exploration
II Predictive Data Analytics
4 Information-Based Learning
5 Similarity-Based Learning
6 Probability-Based Learning
7 Error-Based Learning
8 Deep Learning
9 Evaluation
III Beyond Prediction
10 Beyond Prediction: Unsupervised Learning
11 Beyond Prediction: Reinforcement Learning
IV Case Studies and Conclusions
12 Case Study: Customer Churn
13 Case Study: Galaxy Classification
14 The Art of Machine Learning for Predictive Data Analytics
V Appendices
A Descriptive Statistics and Data Visualization for Machine Learning
B Introduction to Probability for Machine Learning
C Differentiation Techniques for Machine Learning
D Introduction to Linear Algebra
Bibliography
Index
    Prof. John D. Kelleher, Academic Leader of the Information, Communication and Entertainment Research Institute, Technological University Dublin (Ireland)
    Brian MacNamee, Lecturer, School of Computer Science, University College Dublin
    Aoife D'Arcy, Managing Director, The Analytics Store, Dublin, Ireland<

About

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Table of Contents

I Introduction to Machine Learning and Data Analytics
1 Machine Learning for Predictive Data Analytics
2 Data to Insights to Decisions
3 Data Exploration
II Predictive Data Analytics
4 Information-Based Learning
5 Similarity-Based Learning
6 Probability-Based Learning
7 Error-Based Learning
8 Deep Learning
9 Evaluation
III Beyond Prediction
10 Beyond Prediction: Unsupervised Learning
11 Beyond Prediction: Reinforcement Learning
IV Case Studies and Conclusions
12 Case Study: Customer Churn
13 Case Study: Galaxy Classification
14 The Art of Machine Learning for Predictive Data Analytics
V Appendices
A Descriptive Statistics and Data Visualization for Machine Learning
B Introduction to Probability for Machine Learning
C Differentiation Techniques for Machine Learning
D Introduction to Linear Algebra
Bibliography
Index

Author

    Prof. John D. Kelleher, Academic Leader of the Information, Communication and Entertainment Research Institute, Technological University Dublin (Ireland)
    Brian MacNamee, Lecturer, School of Computer Science, University College Dublin
    Aoife D'Arcy, Managing Director, The Analytics Store, Dublin, Ireland<

Books for National Depression Education and Awareness Month

For National Depression Education and Awareness Month in October, we are sharing a collection of titles that educates and informs on depression, including personal stories from those who have experienced depression and topics that range from causes and symptoms of depression to how to develop coping mechanisms to battle depression.

Read more

Horror Titles for the Halloween Season

In celebration of the Halloween season, we are sharing horror books that are aligned with the themes of the holiday: the sometimes unknown and scary creatures and witches. From classic ghost stories and popular novels that are celebrated today, in literature courses and beyond, to contemporary stories about the monsters that hide in the dark, our list

Read more

Books for LGBTQIA+ History Month

For LGBTQIA+ History Month in October, we’re celebrating the shared history of individuals within the community and the importance of the activists who have fought for their rights and the rights of others. We acknowledge the varying and diverse experiences within the LGBTQIA+ community that have shaped history and have led the way for those

Read more