Microprediction

Building an Open AI Network

Look inside
How a web-scale network of autonomous micromanagers can challenge the AI revolution and combat the high cost of quantitative business optimization.

The artificial intelligence (AI) revolution is leaving behind small businesses and organizations that cannot afford in-house teams of data scientists. In Microprediction, Peter Cotton examines the repeated quantitative tasks that drive business optimization from the perspectives of economics, statistics, decision making under uncertainty, and privacy concerns. He asks what things currently described as AI are not “microprediction,” whether microprediction is an individual or collective activity, and how we can produce and distribute high-quality microprediction at low cost. The world is missing a public utility, he concludes, while companies are missing an important strategic approach that would enable them to benefit—and also give back.
 
In an engaging, colloquial style, Cotton argues that market-inspired “superminds” are likely to be very effective compared with other orchestration mechanisms in the domain of microprediction. He presents an ambitious yet practical alternative to the expensive “artisan” data science that currently drains money from firms. Challenging the machine learning revolution and exposing a contradiction at its heart, he offers engineers a new liberty: no longer reliant on quantitative experts, they are free to create intelligent applications using general-purpose application programming interfaces (APIs) and libraries. He describes work underway to encourage this approach, one that he says might someday prove to be as valuable to businesses—and society at large—as the internet.
The Pitch ix
1 Overview 1
2 Commercial Use 19
3 Oracles 43
4 Economical Statistics 63
5 Micromanagers 81
6 Contests 121
7 Communication 133
8 Decisions 145
9 Privacy 169
10 Afterword 187
Acknowledgments 191
Notes 193
Bibliography 199
Index 209
Peter Cotton is a Senior Vice President and Chief Data Scientist at Intech Investment Management LLC.

About

How a web-scale network of autonomous micromanagers can challenge the AI revolution and combat the high cost of quantitative business optimization.

The artificial intelligence (AI) revolution is leaving behind small businesses and organizations that cannot afford in-house teams of data scientists. In Microprediction, Peter Cotton examines the repeated quantitative tasks that drive business optimization from the perspectives of economics, statistics, decision making under uncertainty, and privacy concerns. He asks what things currently described as AI are not “microprediction,” whether microprediction is an individual or collective activity, and how we can produce and distribute high-quality microprediction at low cost. The world is missing a public utility, he concludes, while companies are missing an important strategic approach that would enable them to benefit—and also give back.
 
In an engaging, colloquial style, Cotton argues that market-inspired “superminds” are likely to be very effective compared with other orchestration mechanisms in the domain of microprediction. He presents an ambitious yet practical alternative to the expensive “artisan” data science that currently drains money from firms. Challenging the machine learning revolution and exposing a contradiction at its heart, he offers engineers a new liberty: no longer reliant on quantitative experts, they are free to create intelligent applications using general-purpose application programming interfaces (APIs) and libraries. He describes work underway to encourage this approach, one that he says might someday prove to be as valuable to businesses—and society at large—as the internet.

Table of Contents

The Pitch ix
1 Overview 1
2 Commercial Use 19
3 Oracles 43
4 Economical Statistics 63
5 Micromanagers 81
6 Contests 121
7 Communication 133
8 Decisions 145
9 Privacy 169
10 Afterword 187
Acknowledgments 191
Notes 193
Bibliography 199
Index 209

Author

Peter Cotton is a Senior Vice President and Chief Data Scientist at Intech Investment Management LLC.

Three Penguin Random House Authors Win Pulitzer Prizes

On Monday, May 5, three Penguin Random House authors were honored with a Pulitzer Prize. Established in 1917, the Pulitzer Prizes are the most prestigious awards in American letters. To date, PRH has 143 Pulitzer Prize winners, including William Faulkner, Eudora Welty, Josh Steinbeck, Ron Chernow, Anne Applebaum, Colson Whitehead, and many more. Take a look at our 2025 Pulitzer Prize

Read more

Books for LGBTQIA+ Pride Month

In June we celebrate Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, and Asexual + (LGBTQIA+) Pride Month, which honors the 1969 Stonewall riots in Manhattan. Pride Month is a time to both celebrate the accomplishments of those in the LGBTQ+ community and recognize the ongoing struggles faced by many across the world who wish to live

Read more