Algorithms for Optimization

Look inside
Hardcover
$95.00 US
On sale Mar 12, 2019 | 520 Pages | 9780262039420

See Additional Formats
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.

This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.

Tim A. Wheeler wrote his PhD thesis on safety validation for autonomous vehicles and is now in industry working on air taxis.
Mykel J. Kochenderfer View titles by Mykel J. Kochenderfer

About

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.

This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Author

Mykel J. Kochenderfer is Assistant Professor in the Department of Aeronautics and Astronautics at Stanford University and the author of Decision Making Under Uncertainty: Theory and Application.

Tim A. Wheeler wrote his PhD thesis on safety validation for autonomous vehicles and is now in industry working on air taxis.
Mykel J. Kochenderfer View titles by Mykel J. Kochenderfer

Books for National Depression Education and Awareness Month

For National Depression Education and Awareness Month in October, we are sharing a collection of titles that educates and informs on depression, including personal stories from those who have experienced depression and topics that range from causes and symptoms of depression to how to develop coping mechanisms to battle depression.

Read more

Horror Titles for the Halloween Season

In celebration of the Halloween season, we are sharing horror books that are aligned with the themes of the holiday: the sometimes unknown and scary creatures and witches. From classic ghost stories and popular novels that are celebrated today, in literature courses and beyond, to contemporary stories about the monsters that hide in the dark, our list

Read more

Books for LGBTQIA+ History Month

For LGBTQIA+ History Month in October, we’re celebrating the shared history of individuals within the community and the importance of the activists who have fought for their rights and the rights of others. We acknowledge the varying and diverse experiences within the LGBTQIA+ community that have shaped history and have led the way for those

Read more